Visible Absorption Spectra of Substituted Ferricenium Cations

By R. Prins

[Koninklijke/Shell-Laboratorium Amsterdam, (Shell Research N.V.) Netherlands]

Summary The magnitude of the extinction coefficient and the shift on substitution show that the band at 16,200 cm⁻¹ in the absorption spectrum of $Fe(C_5H_5)_2^+$, which formerly was attributed to a 3d-3d ligand-field transition, is due to a ligand-to-metal $e_{1u} \rightarrow e_{2g}$ chargetransfer transition.

In the visible absorption spectrum of the ferricenium cation

there is a band at $16,200 \text{ cm}^{-1}$. Levy and Orgel¹ and Scott and Becker² attributed this band to the ${}^{2}E_{2g} \rightarrow {}^{2}A_{1g}$ transition, in which an electron is promoted from the $a_{1g}(3d)$ to the $e_{2g}(3d)$ orbital. This assignment to a parityforbidden 3d-3d transition is, however, questionable. The extinction coefficient of this band (ϵ 420) is one order of magnitude larger than extinction coefficients of 3d-3dbands in the absorption spectra of dibenzenechromium cation (ϵ 10),¹⁻³ vanadocene, nickelocene, and ferrocene $(10 < \epsilon < 50)$,⁴ and a similar assignment for the 16,200 cm⁻¹ band therefore seems improbable.

Our absorption measurements on substituted ferricenium cations support a different assignment. Substitution with methyl groups gives a red-shift of 700 cm⁻¹, while the acetyl group gives a blue-shift of 2700 cm^{-1} (cf. Table). These shifts are much larger than those observed for the 3d-3d bands of substituted ferrocenes⁵ and indicate that at least one of the orbitals involved in the $16,200 \text{ cm}^{-1}$ transition is a ligand orbital. Since in other metallocenes no band around $16,000 \text{ cm}^{-1}$ is observed,⁴ a ligand-to-ligand transition can be ruled out as a possible explanation and we conclude that the $16,200 \text{ cm}^{-1}$ band is a charge-transfer band. Furthermore, the observation that the electrondonating methyl groups give a red-shift and the electronwithdrawing acetyl group gives a blue-shift shows that the band is due to a ligand-to-metal charge-transfer transition. Comparison with an MO calculation on ferrocene⁶ indicates that the transition most probably is the symmetry-allowed ${}^{2}E_{2g} \rightarrow {}^{2}E_{1u}$ transition, in which an electron is promoted from the filled e_{1u} ligand orbital to the partly filled⁷ e_{2q} iron orbital.

Additional evidence in favour of this assignment comes from photoelectron measurements by Turner.⁸ In the photoelectron spectrum of ferrocene there are peaks at 6.85, 7.2, 8.8, and 9.3 ev, and several others at higher energies. The lower two ionization potentials are due to **r**emoval of electrons from the e_{2g} and a_{1g} iron 3*d*-orbitals.⁸ The next two IP's are somewhat larger than the lowest one (8.7 ev) of the C₅H₅ radical⁹ and may therefore be attributed to ionization from the e_{1u} and e_{1g} ligand π -orbitals. Subtraction of the first from the third and fourth IP's of ${\rm Fe}(C_5H_5)_2$ gives energy differences of 1.95 and 2.45 ev, that is 15,700 and 19,800 cm⁻¹. These values should be close to the excitation energies of the ${}^{2}E_{2g} \rightarrow {}^{2}E_{1u}$, ${}^{2}E_{1g}$ bands in

¹ D. A. Levy and L. E. Orgel, Mol. Phys., 1961, 4, 93.
 ² D. R. Scott and R. S. Becker, J. Phys. Chem., 1965, 69, 3207.
 ³ S. Yamada, H. Yamazaki, H. Nishikawa, and R. Tsuchida, Bull. Chem. Soc. Japan, 1960, 33, 481.

- ⁴ R. Prins and J. D. W. van Voorst, J. Chem. Phys., 1968, 49, 4665.
 ⁵ T. H. Barr and W. E. Watts, J. Organometallic Chem., 1968, 15, 177.
 ⁶ J. H. Schachtschneider, R. Prins, and P. Ros, Inorg. Chim. Acta, 1967, 1, 462.

 ⁷ R. Prins and F. J. Reinders, J. Amer. Chem. Soc., 1969, 91, 4929.
 ⁸ D. W. Turner, in "Physical Methods in Advanced Inorganic Chemistry," ed. H. A. O. Hill and P. Day, Interscience, New York, 1968, p. 102.

⁹ A. G. Harrison, L. R. Honnen, H. J. Dauben, and F. R. Lossing, J. Amer. Chem. Soc., 1960, 82, 5593.

the absorption spectrum of $Fe(C_5H_5)^+$. No real coincidence is expected, because all energies refer to vertical transitions and the dimensional changes differ when going from $Fe(C_5H_5)_2$ to $Fe(C_5H_5)_2^+$. Since in the absorption spectrum of $Fe(C_5H_5)_2^+$ there is a moderately strong band at $16,200 \text{ cm}^{-1}$ and a weak band near $19,000 \text{ cm}^{-1}$, we attribute the former to the symmetry-allowed ${}^2E_{2g} \rightarrow {}^2E_{1u}$ transition and the latter to the forbidden ${}^{2}E_{2g} \rightarrow {}^{2}E_{1g}$ transition.

The photoelectron results not only confirm the ${}^{2}E_{2g} \rightarrow$ ${}^{2}E_{1u}$ assignment of the visible absorption band, but also give information on the order of the a_{1g} and e_{2g} iron 3dorbitals. Subtraction of the first from the second IP gives an energy difference of $0.35 \text{ ev} (= 2800 \text{ cm}^{-1})$ between the ${}^{2}A_{1g}$ and ${}^{2}E_{2g}$ states of $Fe(C_{5}H_{5})^{+}_{2}$. A ligand-field analysis of this value in terms of one- and two-electron integrals^{1,2} shows that the a_{1g} level is 7200 cm⁻¹ above the e_{2g} level. This means that ionization of $Fe(C_5H_5)_2$ to $Fe(C_5H_5)_2^+$ in its ground state takes place by ejection of an electron from an orbital (e_{2g}) which is not the highest filled orbital. The reason for this paradoxical situation is that two-electron integrals favour the ${}^{2}E_{2g}$ configuration relative to the ${}^{2}A_{1g}$ configuration.1,2

The present as well as former⁴ results demonstrate that the order and character of the highest filled and lowest empty orbitals in ferrocene are:

$$e_{1g}(\pi\text{-Cp}) < e_{1u}(\pi\text{-Cp}) < e_{2g}(3d) < a_{1g}(3d) < e_{1g}(3d)$$

Position and extinction coefficients of the visible absorption bands

Compound		σ, cm ⁻¹	ϵ, l.mole ⁻¹ .cm ⁻¹
$Fe(C_5H_4CH_8)_8^+$	••	15,500	290
$\operatorname{Fe}(C_{5}H_{5})_{2}^{+}$	••	16,200 18 900	420
$\Gamma e(C_5 \Pi_5)(C_5 \Pi_4, COC \Pi_8)$	••	10,900	320

(Received, January 8th, 1970; Com. 029.)